博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
A field guide to algebra,theorem 1.1.3
阅读量:7211 次
发布时间:2019-06-29

本文共 2552 字,大约阅读时间需要 8 分钟。

Let $\sum$ be a subset of $\mathbf{R}$ containing $0$ and $1$,the set $E(\sum)$ of all real numbers which are constructable from $\sum$ satisfies the following properties:

 

  a):if $x,y\in E(\sum)$ ,then $x+y,x-y,xy,$ and $\frac{x}{y}\in E(\sum)$ if $y\neq 0$. 

  b):if $x>0$, $x\in E(\sum)$,then $\sqrt{x}\in   E(\sum)$.

  Proof:
  a)Construction of $x+y$: $\frac{x+y}{2}$ can be constructed by taking the midpoint of $x$ and $y$(It is easy to verify that a midpoint can be constructed by drawing two circles of radius $|x-y|$ which centering at $x$ and $y$ respectively.Then drawing a line passing through the two intersection points of the circles.Then this passing line intersects with the line passing though $x$ and $y$,the intersection point is $\frac{x+y}{2}$.).Then $x+y$ can be constructed by drawing a circle centering at $\frac{x+y}{2}$ with radius $\frac{|x+y|}{2}$.
  Construction of $x-y$:$-y$ can be constructed by drawing a circle  centering at $0$ with radius $|y|$. $x+(-y)$ can be constructed,so
  $x-y$ can be constructed.
 
  Construction of $xy$:In the plane $\mathbf{R}^2$,$(x-1,0)$ can be  constructed.So the point $(x-1,y)$ can be easily
  constructed(Why?)The intersection point of the line $y'-0=y(x'-x)$  and $x'=0$ is $(0,-xy)$.So $xy$ can be constructed easily.
  Construction of $\frac{1}{y}$ if $y\neq 0$:In the plane  $\mathbf{R}^2$,$(x-xy,0)$ can be easily constructed.$(x-xy,1)$ can  be easily constructed.The intersection point of the line  $y'-0=\frac{1}{xy}(x'-x)$ and $x'=0$ is $\frac{-1}{y}$.So  $\frac{1}{y}$ can be easily constructed.
  b):In $\mathbf{R}^2$,a line $y'=kx'+c$,a circle  $(x'-a)^2+(y'-b)^2=r^2$.$r>0,k,c\in\mathbf{R}$.Let the intersection  point be $(m,n)$,then
  \begin{equation}
    \label{eq:22_11_48}
    (1+k^2)m^2+[2(c-b)k-2a]m+[a^2+(c-b)^2-r^2]=0
  \end{equation}
  Then
  \begin{equation}
    \label{eq:22_11_50}
    m=\frac{-[2(c-b)k-2a]\pm \sqrt{\Delta}}{2(1+k^2)}  
  \end{equation}
  It is a delight to see that a $\sqrt{}$ appears in  \ref{eq:22_11_50}.$\Delta  =[2(c-b)k-2a]^2-4(1+k^2)[a^2+(c-b)^2-r^2]$. Let $k=0$,then
  \begin{equation}
    \label{eq:22_16_04}
    m=\frac{2a\pm \sqrt{4r^2-4(c-b)^2}}{2}=a\pm \sqrt{r^2-(c-b)^2}
  \end{equation}
Let $r^2-(c-b)^2=x$.For example,let $c=b$,and $r=x$,then
\begin{equation}
  \label{eq:22_16_15}
  m=a\pm \sqrt{x}
\end{equation}
So $\sqrt{x}$ is constructed.$\Box$

Remark:冬眠的老鼠(哆嗒数学QQ群(128709478)里的一个比较牛的人)has an alternative way of constructing $\sqrt{x}$,by using the .See the below picture.

$p^2=1x$,So $p=\sqrt{x}$.So $\sqrt{x}$ is constructed.

转载于:https://www.cnblogs.com/yeluqing/archive/2012/09/22/3827976.html

你可能感兴趣的文章
前端开发如何做好本地接口模拟
查看>>
Vue项目部署遇到的问题及解决方案
查看>>
Python 基础起步(一)写在开篇的话,写给同为小白的你
查看>>
webpack入门学习手记(一)
查看>>
GraphQL —— 标量类型
查看>>
一些SAP Partners能够通过二次开发实现打通C/4HANA和S/4HANA的方法介绍
查看>>
【C++】 12_经典问题解析 一
查看>>
Vue2 模板template的四种写法总结
查看>>
深入浅出分析MySQL常用存储引擎
查看>>
深入Redis持久化
查看>>
我来重新学习js的面向对象(part 4)
查看>>
事件处理程序中event参数的传递
查看>>
JS面向对象的程序设计之创建对象_工厂模式,构造函数模式,原型模式-1
查看>>
前端需要了解的nginx(2)
查看>>
在vue-cli项目下简单使用mockjs模拟数据
查看>>
用python爬取知识星球
查看>>
从汇编角度看待函数调用
查看>>
麻雀虽小五脏俱全的Vue拉勾项目,看看应该有帮助
查看>>
解读|数据分析的发展和演变经过哪几个阶段
查看>>
解决sourceTree的git clone 报SSH密钥认证失败的问题
查看>>